

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Compose Relevance Analysis (CoRelAy)

CoRelAy is a tool to compose small-scale (single-machine) analysis pipelines.
Pipelines are designed with a number of steps (Task) with default operations (Processor).
Any step of the pipeline may then be indiviually changed by assigning a new operator (Processor).
Processors have Params which define their operation.
A quick practical explanation of Pipelines, Tasks, Processors and Params is shown in example/corelay_basics.py.

CoRelAy was created to to quickly implement pipelines to generate analysis data
which can then be visualized using ViRelAy.

If you find CoRelAy useful for your research, why not cite our related [paper](https://arxiv.org/abs/2106.13200):
```
@article{anders2021software,



	author  = {Anders, Christopher J. and
	Neumann, David and
Samek, Wojciech and
Müller, Klaus-Robert and
Lapuschkin, Sebastian},





title   = {Software for Dataset-wide XAI: From Local Explanations to Global Insights with {Zennit}, {CoRelAy}, and {ViRelAy}},
journal = {CoRR},
volume  = {abs/2106.13200},
year    = {2021},





}

## Install

CoRelAy may be installed using pip with
`shell
$ pip install corelay
`

To install optional HDBSCAN and UMAP support, use
`shell
$ pip install corelay[umap,hdbscan]
`

## Usage
Examples to highlight some features of CoRelAy can be found in example/.

We mainly use HDF5 files to store results. The structure used by ViRelAy is documented in the ViRelAy
repository at docs/database_specification.md. An example to create HDF5 files which can be used with ViRelAy is
shown in example/hdf5_structure.py

To do a full SpRAy analysis which can be visualized with ViRelAy, an advanced script can be found in
example/virelay_analysis.py.

The following shows the contents of example/memoize_spectral_pipeline.py:

```python
‘’’Example using memoization to store (intermediate) results.’’’
import time

import h5py
import numpy as np

from corelay.base import Param
from corelay.processor.base import Processor
from corelay.processor.flow import Sequential, Parallel
from corelay.pipeline.spectral import SpectralClustering
from corelay.processor.clustering import KMeans
from corelay.processor.embedding import TSNEEmbedding, EigenDecomposition
from corelay.io.storage import HashedHDF5

custom processors can be implemented by defining a function attribute
class Flatten(Processor):

	def function(self, data):
	return data.reshape(data.shape[0], np.prod(data.shape[1:]))

	class SumChannel(Processor):
	# parameters can be assigned by defining a class-owned Param instance
axis = Param(int, 1)
def function(self, data):

return data.sum(1)

	class Normalize(Processor):
	
	def function(self, data):
	data = data / data.sum((1, 2), keepdims=True)
return data

	def main():
	np.random.seed(0xDEADBEEF)
fpath = ‘test.analysis.h5’
with h5py.File(fpath, ‘a’) as fd:

HashedHDF5 is an io-object that stores outputs of Processors based on hashes in hdf5
iobj = HashedHDF5(fd.require_group(‘proc_data’))

generate some exemplary data
data = np.random.normal(size=(64, 3, 32, 32))
n_clusters = range(2, 20)

SpectralClustering is an Example for a pre-defined Pipeline
pipeline = SpectralClustering(

processors, such as EigenDecomposition, can be assigned to pre-defined tasks
embedding=EigenDecomposition(n_eigval=8, io=iobj),
flow-based Processors, such as Parallel, can combine multiple Processors
broadcast=True copies the input as many times as there are Processors
broadcast=False instead attempts to match each input to a Processor
clustering=Parallel([

	Parallel([
	KMeans(n_clusters=k, io=iobj) for k in n_clusters

], broadcast=True),
io-objects will be used during computation when supplied to Processors
if a corresponding output value (here identified by hashes) already exists,
the value is not computed again but instead loaded from the io object
TSNEEmbedding(io=iobj)

], broadcast=True, is_output=True)

)
Processors (and Params) can be updated by simply assigning corresponding attributes
pipeline.preprocessing = Sequential([

SumChannel(),
Normalize(),
Flatten()

])

start_time = time.perf_counter()

Processors flagged with “is_output=True” will be accumulated in the output
the output will be a tree of tuples, with the same hierachy as the pipeline
(i.e. clusterings here contains a tuple of the k-means outputs)
clusterings, tsne = pipeline(data)

since we memoize our results in a hdf5 file, subsequent calls will not compute
the values (for the same inputs), but rather load them from the hdf5 file
try running the script multiple times
duration = time.perf_counter() - start_time
print(f’Pipeline execution time: {duration:.4f} seconds’)

	if __name__ == ‘__main__’:
	main()


```




            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





